Improved Variational Guiding of Smoke Animations
Michael B. Nielsen, Brian B. Christensen
In Computer Graphics Forum, 29(2), 2010.
Abstract: Smoke animations are hard to art-direct because simple changes in parameters such as simulation resolution often lead to unpredictable changes in the final result. Previous work has addressed this problem with a guiding approach which couples low-resolution simulations – that exhibit the desired flow and behaviour – to the final, high-resolution simulation. This is done in such a way that the desired low frequency features are to some extent preserved in the high-resolution simulation. However, the steady (i.e. constant) guiding used often leads to a lack of sufficiently high detail, and employing time-dependent guiding is expensive because the matrix of the resulting set of equations needs to be recomputed at every iteration. We propose an improved mathematical model for Eulerian-based simulations which is better suited for dynamic, time-dependent guiding of smoke animations through a novel variational coupling of the low- and high-resolution simulations. Our model results in a matrix that does not require re-computation when the guiding changes over time, and hence we can employ time-dependent guiding more efficiently both in terms of storage and computational requirements. We demonstrate that time-dependent guiding allows for more high frequency detail to develop without losing correspondence to the low resolution simulation. Furthermore, we explore various artistic effects made possible by time-dependent guiding.
Keyword(s): Computer Graphics [I.3.7]: Animation
Article URL: http://dx.doi.org/10.1111/j.1467-8659.2009.01640.x
BibTeX format:
@article{CGF:CGF1640,
  author = {Michael B. Nielsen and Brian B. Christensen},
  title = {Improved Variational Guiding of Smoke Animations},
  journal = {Computer Graphics Forum},
  volume = {29},
  number = {2},
  pages = {705--712},
  year = {2010},
}
Search for more articles by Michael B. Nielsen.
Search for more articles by Brian B. Christensen.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."