Modeling Surfaces of Arbitrary Topology using Manifolds
Cindy M. Grimm, John F. Hughes
Proceedings of SIGGRAPH 95, August 1995, pp. 359--368.
Abstract: We describe an extension of B-splines to surfaces of arbitrary topology, including arbitrary boundaries. The technique inherits many of the properties of B-splines: local control, a compact representation, and guaranteed continuity of arbitrary degree. The surface is specified using a polyhedral control mesh instead of a rectangular one; the resulting surface approximates the polyhedral mesh much as a B-spline approximates its rectangular control mesh. Like a B-spline, the surface is a single, continuous object. This is achieved by modeling the domain of the surface with a manifold whose topology matches that of the polyhedral mesh, then embedding this domain into 3-space using a basis-function/control-point formulation. We provide a constructive approach to building a manifold.
BibTeX format:
@inproceedings{Grimm:1995:MSO,
  author = {Cindy M. Grimm and John F. Hughes},
  title = {Modeling Surfaces of Arbitrary Topology using Manifolds},
  booktitle = {Proceedings of SIGGRAPH 95},
  pages = {359--368},
  month = aug,
  year = {1995},
}
Search for more articles by Cindy M. Grimm.
Search for more articles by John F. Hughes.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."