NC Milling Error Assessment and Tool Path Correction
Yunching Huang, James H. Oliver
Proceedings of SIGGRAPH 94, July 1994, pp. 287--294.
Abstract: A system of algorithms is presented for material removal simulation, dimensional error assessment and automated correction of five-axis numerically controlled (NC) milling tool paths. The methods are based on a spatial partitioning technique which incorporates incremental proximity calculations between milled and design surfaces. Hence, in addition to real-time animated five-axis milling simulation, milling errors are measured and displayed simultaneously. Using intermediate error assessment results, a reduction of intersection volume algorithm is developed to eliminate gouges on the workpiece via tool path correction. Finally, the view dependency typical of previous spatial partitioning-based NC simulation methods is overcome by a contour display technique which generates parallel planar contours to represent the workpiece, thus enabling dynamic viewing transformations without reconstruction of the entire data structure.
@inproceedings{Huang:1994:NME,
author = {Yunching Huang and James H. Oliver},
title = {NC Milling Error Assessment and Tool Path Correction},
booktitle = {Proceedings of SIGGRAPH 94},
pages = {287--294},
month = jul,
year = {1994},
}
Return to the search page.
graphbib: Powered by "bibsql" and "SQLite3."