Streaming compression of tetrahedral volume meshes
Martin Isenburg, Peter Lindstrom, Stefan Gumhold, Jonathan Richard Shewchuk
Graphics Interface 2006, June 2006, pp. 115--121.
Abstract: Geometry processing algorithms have traditionally assumed that the input data is entirely in main memory and available for random access. This assumption does not scale to large data sets, as exhausting the physical memory typically leads to IO-inefficient thrashing. Recent works advocate processing geometry in a "streaming" manner, where computation and output begin as soon as possible. Streaming is suitable for tasks that require only local neighbor information and batch process an entire data set.We describe a streaming compression scheme for tetrahedral volume meshes that encodes vertices and tetrahedra in the order they are written. To keep the memory footprint low, the compressor is informed when vertices are referenced for the last time (i.e. are finalized). The compression achieved depends on how coherent the input order is and how many tetrahedra are buffered for local reordering. For reasonably coherent orderings and a buffer of 10,000 tetrahedra, we achieve compression rates that are only 25 to 40 percent above the state-of-the-art, while requiring drastically less memory resources and less than half the processing time.
BibTeX format:
@inproceedings{Isenburg:2006:SCO,
  author = {Martin Isenburg and Peter Lindstrom and Stefan Gumhold and Jonathan Richard Shewchuk},
  title = {Streaming compression of tetrahedral volume meshes},
  booktitle = {Graphics Interface 2006},
  pages = {115--121},
  month = jun,
  year = {2006},
}
Search for more articles by Martin Isenburg.
Search for more articles by Peter Lindstrom.
Search for more articles by Stefan Gumhold.
Search for more articles by Jonathan Richard Shewchuk.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."