Escherization
Craig S. Kaplan, David H. Salesin
Proceedings of SIGGRAPH 2000, July 2000, pp. 499--510.
Abstract: This paper introduces and presents a solution to the 'Escherization' problem: given a closed figure in the plane, find a new closed figure that is similar to the original and tiles the plane. Our solution works by using a simulated annealer to optimize over a parameterization of the "isohedral" tilings, a class of tilings that is flexible enough to encompass nearly all of Escher's own tilings, and yet simple enough to be encoded and explored by a computer. We also describe a representation for isohedral tilings that allows for highly interactive viewing and rendering. We demonstrate the use of these tools - along with several additional techniques for adding decorations to tilings - with a variety of original ornamental designs.
Keyword(s): Tilings, tesselations, morphing, optimization, simulated annealing, Escher
BibTeX format:
@inproceedings{Kaplan:2000:E,
  author = {Craig S. Kaplan and David H. Salesin},
  title = {Escherization},
  booktitle = {Proceedings of SIGGRAPH 2000},
  pages = {499--510},
  month = jul,
  year = {2000},
}
Search for more articles by Craig S. Kaplan.
Search for more articles by David H. Salesin.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."