Efficient sparse voxel octrees
Samuli Laine, Tero Karras
Symposium on Interactive 3D Graphics and Games, February 2010, pp. 55--63.
Abstract: In this paper we examine the possibilities of using voxel representations as a generic way for expressing complex and feature-rich geometry on current and future GPUs. We present in detail a compact data structure for storing voxels and an efficient algorithm for performing ray casts using this structure.
We augment the voxel data with novel contour information that increases geometric resolution, allows more compact encoding of smooth surfaces, and accelerates ray casts. We also employ a novel normal compression format for storing high-precision object-space normals. Finally, we present a variable-radius post-process filtering technique for smoothing out blockiness caused by discrete sampling of shading attributes.
Our benchmarks show that our voxel representation is competitive with triangle-based representations in terms of ray casting performance, while allowing tremendously greater geometric detail and unique shading information for every voxel.
@inproceedings{Laine:2010:ESV,
author = {Samuli Laine and Tero Karras},
title = {Efficient sparse voxel octrees},
booktitle = {Symposium on Interactive 3D Graphics and Games},
pages = {55--63},
month = feb,
year = {2010},
}
Return to the search page.
graphbib: Powered by "bibsql" and "SQLite3."