Moving Least Squares Coordinates
Josiah Manson, Scott Schaefer
Eurographics Symposium on Geometry Processing, 2010, pp. 1517--1524.
Abstract: We propose a new family of barycentric coordinates that have closed-forms for arbitrary 2D polygons. These coordinates are easy to compute and have linear precision even for open polygons. Not only do these coordinates have linear precision, but we can create coordinates that reproduce polynomials of a set degree m as long as degree m polynomials are specified along the boundary of the polygon. We also show how to extend these coordinates to interpolate derivatives specified on the boundary.
@inproceedings{Manson:2010:MLS,
author = {Josiah Manson and Scott Schaefer},
title = {Moving Least Squares Coordinates},
booktitle = {Eurographics Symposium on Geometry Processing},
pages = {1517--1524},
year = {2010},
}
Return to the search page.
graphbib: Powered by "bibsql" and "SQLite3."