Axis-aligned filtering for interactive physically-based diffuse indirect lighting
Soham Uday Mehta, Brandon Wang, Ravi Ramamoorthi, Frédo Durand
In ACM Transactions on Graphics, 32(4), July 2013.
Abstract: We introduce an algorithm for interactive rendering of physically-based global illumination, based on a novel frequency analysis of indirect lighting. Our method combines adaptive sampling by Monte Carlo ray or path tracing, using a standard GPU-accelerated raytracer, with real-time reconstruction of the resulting noisy images. Our theoretical analysis assumes diffuse indirect lighting, with general Lambertian and specular receivers. In practice, we demonstrate accurate interactive global illumination with diffuse and moderately glossy objects, at 1-3 fps. We show mathematically that indirect illumination is a structured signal in the Fourier domain, with inherent band-limiting due to the BRDF and geometry terms. We extend previous work on sheared and axis-aligned filtering for motion blur and shadows, to develop an image-space filtering method for interreflections. Our method enables 5--8X reduced sampling rates and wall clock times, and converges to ground truth as more samples are added. To develop our theory, we overcome important technical challenges---unlike previous work, there is no light source to serve as a band-limit in indirect lighting, and we also consider non-parallel geometry of receiver and reflecting surfaces, without first-order approximations.
Article URL: http://dx.doi.org/10.1145/2461912.2461947
BibTeX format:
@article{Mehta:2013:AFF,
  author = {Soham Uday Mehta and Brandon Wang and Ravi Ramamoorthi and Frédo Durand},
  title = {Axis-aligned filtering for interactive physically-based diffuse indirect lighting},
  journal = {ACM Transactions on Graphics},
  volume = {32},
  number = {4},
  pages = {96:1--96:11},
  month = jul,
  year = {2013},
}
Search for more articles by Soham Uday Mehta.
Search for more articles by Brandon Wang.
Search for more articles by Ravi Ramamoorthi.
Search for more articles by Frédo Durand.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."