A data-driven approach to quantifying natural human motion
Liu Ren, Alton Patrick, Alexei A. Efros, Jessica K. Hodgins, James M. Rehg
In ACM Transactions on Graphics, 24(3), August 2005.
Abstract: In this paper, we investigate whether it is possible to develop a measure that quantifies the naturalness of human motion (as defined by a large database). Such a measure might prove useful in verifying that a motion editing operation had not destroyed the naturalness of a motion capture clip or that a synthetic motion transition was within the space of those seen in natural human motion. We explore the performance of mixture of Gaussians (MoG), hidden Markov models (HMM), and switching linear dynamic systems (SLDS) on this problem. We use each of these statistical models alone and as part of an ensemble of smaller statistical models. We also implement a Naive Bayes (NB) model for a baseline comparison. We test these techniques on motion capture data held out from a database, keyframed motions, edited motions, motions with noise added, and synthetic motion transitions. We present the results as receiver operating characteristic (ROC) curves and compare the results to the judgments made by subjects in a user study.
Keyword(s): human animation, machine learning, motion evaluation, natural motion
Article URL: http://doi.acm.org/10.1145/1073204.1073316
BibTeX format:
@article{Ren:2005:ADA,
  author = {Liu Ren and Alton Patrick and Alexei A. Efros and Jessica K. Hodgins and James M. Rehg},
  title = {A data-driven approach to quantifying natural human motion},
  journal = {ACM Transactions on Graphics},
  volume = {24},
  number = {3},
  pages = {1090--1097},
  month = aug,
  year = {2005},
}
Search for more articles by Liu Ren.
Search for more articles by Alton Patrick.
Search for more articles by Alexei A. Efros.
Search for more articles by Jessica K. Hodgins.
Search for more articles by James M. Rehg.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."