Visual Explanation of the Complexity in Julia Sets
Okke Schrijvers, Jarke J. van Wijk
In Computer Graphics Forum, 32(3pt4), 2013.
Abstract: Julia sets based on quadratic polynomials have a very simple definition, yet a highly intricate shape. Our contribution is to provide a visual explanation for this complexity. To this end we show the construction of Julia sets as a dynamic process, in contrast to showing just a static image of the set itself. Our method is based on the Inverse Iteration Method (IIM). We start with a disk, which is successively distorted. The crucial step is to show an animation of the effect of taking a root of a subset of the complex plane. We present four different approaches for this, using a Riemann surface, a corkscrew, a fan, and disks as metaphors. We packaged our results in an interactive tool with a simple interface, such that everybody can view and inspect these for different Julia sets. The results are useful for teaching complex analysis, promoting mathematics, entertainment, and, above all, as a visual explanation for the complexity of Julia sets.
@article{Schrijvers:2013:VEO,
author = {Okke Schrijvers and Jarke J. van Wijk},
title = {Visual Explanation of the Complexity in Julia Sets},
journal = {Computer Graphics Forum},
volume = {32},
number = {3pt4},
pages = {431--440},
year = {2013},
}
Return to the search page.
graphbib: Powered by "bibsql" and "SQLite3."