Energetically Consistent Invertible Elasticity
Alexey Stomakhin, Russell Howes, Craig Schroeder, Joseph M. Teran
Symposium on Computer Animation, July 2012, pp. 25--32.
Abstract: We provide a smooth extension of arbitrary isotropic hyperelastic energy density functions to inverted configurations. This extension is designed to improve robustness for elasticity simulations with extremely large deformations and is analogous to the extension given to the first Piola-Kirchoff stress in [ITF04]. We show that our energy-based approach is significantly more robust to large deformations than the first Piola-Kirchoff fix. Furthermore, we show that the robustness and stability of a hyperelastic model can be predicted from a characteristic contour, which we call its primary contour. The extension to inverted configurations is defined via extrapolation from a convex threshold surface that lies in the uninverted portion of the principal stretches space. The extended hyperelastic energy density yields continuous stress and unambiguous stress derivatives in all inverted configurations, unlike in [TSIF05]. We show that our invertible energy-density-based approach outperforms the popular hyperelastic corotated model, and we also show how to use the primary contour methodology to improve the robustness of this model to large deformations.
Article URL: http://dx.doi.org/10.2312/SCA/SCA12/025-032
BibTeX format:
@inproceedings{Stomakhin:2012:ECI,
  author = {Alexey Stomakhin and Russell Howes and Craig Schroeder and Joseph M. Teran},
  title = {Energetically Consistent Invertible Elasticity},
  booktitle = {Symposium on Computer Animation},
  pages = {25--32},
  month = jul,
  year = {2012},
}
Search for more articles by Alexey Stomakhin.
Search for more articles by Russell Howes.
Search for more articles by Craig Schroeder.
Search for more articles by Joseph M. Teran.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."