On-line learning of parametric mixture models for light transport simulation
Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, Jaroslav Křivánek
In ACM Transactions on Graphics, 33(4), July 2014.
Abstract: Monte Carlo techniques for light transport simulation rely on importance sampling when constructing light transport paths. Previous work has shown that suitable sampling distributions can be recovered from particles distributed in the scene prior to rendering. We propose to represent the distributions by a parametric mixture model trained in an on-line (i.e. progressive) manner from a potentially infinite stream of particles. This enables recovering good sampling distributions in scenes with complex lighting, where the necessary number of particles may exceed available memory. Using these distributions for sampling scattering directions and light emission significantly improves the performance of state-of-the-art light transport simulation algorithms when dealing with complex lighting.
Article URL: http://dx.doi.org/10.1145/2601097.2601203
BibTeX format:
@article{Vorba:2014:OLO,
  author = {Jiří Vorba and Ondřej Karlík and Martin Šik and Tobias Ritschel and Jaroslav Křivánek},
  title = {On-line learning of parametric mixture models for light transport simulation},
  journal = {ACM Transactions on Graphics},
  volume = {33},
  number = {4},
  pages = {101:1--101:11},
  month = jul,
  year = {2014},
}
Search for more articles by Jiří Vorba.
Search for more articles by Ondřej Karlík.
Search for more articles by Martin Šik.
Search for more articles by Tobias Ritschel.
Search for more articles by Jaroslav Křivánek.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."