FacetClouds: exploring tag clouds for multi-dimensional data
Manuela Waldner, Johann Schrammel, Michael Klein, Katrín Kristjánsdóttir, Dominik Unger, Manfred Tscheligi
Graphics Interface, May 2013, pp. 17--24.
Abstract: Tag clouds are simple yet very widespread representations of how often certain words appear in a collection. In conventional tag clouds, only a single visual text variable is actively controlled: the tags' font size. Previous work has demonstrated that font size is indeed the most influential visual text variable. However, there are other variables, such as text color, font style and tag orientation, that could be manipulated to encode additional data dimensions. FacetClouds manipulate intrinsic visual text variables to encode multiple data dimensions within a single tag cloud. We conducted a series of experiments to detect the most appropriate visual text variables for encoding nominal and ordinal values in a cloud with tags of varying font size. Results show that color is the most expressive variable for both data types, and that a combination of tag rotation and background color range leads to the best overall performance when showing multiple data dimensions in a single tag cloud.
BibTeX format:
@inproceedings{Waldner:2013:FET,
  author = {Manuela Waldner and Johann Schrammel and Michael Klein and Katrín Kristjánsdóttir and Dominik Unger and Manfred Tscheligi},
  title = {FacetClouds: exploring tag clouds for multi-dimensional data},
  booktitle = {Graphics Interface},
  pages = {17--24},
  month = may,
  year = {2013},
}
Search for more articles by Manuela Waldner.
Search for more articles by Johann Schrammel.
Search for more articles by Michael Klein.
Search for more articles by Katrín Kristjánsdóttir.
Search for more articles by Dominik Unger.
Search for more articles by Manfred Tscheligi.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."