Optimizing Walking Controllers for Uncertain Inputs and Environments
Jack M. Wang, David J. Fleet, Aaron Hertzmann
In ACM Transactions on Graphics, 29(4), July 2010.
Abstract: We introduce methods for optimizing physics-based walking controllers for robustness to uncertainty. Many unknown factors, such as external forces, control torques, and user control inputs, cannot be known in advance and must be treated as uncertain. These variables are represented with probability distributions, and a return function scores the desirability of a single motion. Controller optimization entails maximizing the expected value of the return, which is computed by Monte Carlo methods. We demonstrate examples with different sources of uncertainty and task constraints. Optimizing control strategies under uncertainty increases robustness and produces natural variations in style.
Keyword(s): controller synthesis, human motion, optimization, physics-based animation
@article{Wang:2010:OWC,
author = {Jack M. Wang and David J. Fleet and Aaron Hertzmann},
title = {Optimizing Walking Controllers for Uncertain Inputs and Environments},
journal = {ACM Transactions on Graphics},
volume = {29},
number = {4},
pages = {73:1--73:8},
month = jul,
year = {2010},
}
Return to the search page.
graphbib: Powered by "bibsql" and "SQLite3."