Gradient Domain Editing of Deforming Mesh Sequences
Weiwei Xu, Kun Zhou, Yizhou Yu, Qifeng Tan, Qunsheng Peng, Baining Guo
In ACM Transactions on Graphics, 26(3), July 2007.
Abstract: Many graphics applications, including computer games and 3D animated films, make heavy use of deforming mesh sequences. In this paper, we generalize gradient domain editing to deforming mesh sequences. Our framework is keyframe based. Given sparse and irregularly distributed constraints at unevenly spaced keyframes, our solution first adjusts the meshes at the keyframes to satisfy these constraints, and then smoothly propagate the constraints and deformations at keyframes to the whole sequence to generate new deforming mesh sequence. To achieve convenient keyframe editing, we have developed an efficient alternating least-squares method. It harnesses the power of subspace deformation and two-pass linear methods to achieve high-quality deformations. We have also developed an effective algorithm to define boundary conditions for all frames using handle trajectory editing. Our deforming mesh editing framework has been successfully applied to a number of editing scenarios with increasing complexity, including footprint editing, path editing, temporal filtering, handle-based deformation mixing, and spacetime morphing.
Keyword(s): control meshes, handle trajectory, keyframes, local frames, mesh deformation, rotation interpolation
Article URL: http://doi.acm.org/10.1145/1276377.1276482
BibTeX format:
@article{Xu:2007:GDE,
  author = {Weiwei Xu and Kun Zhou and Yizhou Yu and Qifeng Tan and Qunsheng Peng and Baining Guo},
  title = {Gradient Domain Editing of Deforming Mesh Sequences},
  journal = {ACM Transactions on Graphics},
  volume = {26},
  number = {3},
  pages = {84:1--84:20},
  month = jul,
  year = {2007},
}
Search for more articles by Weiwei Xu.
Search for more articles by Kun Zhou.
Search for more articles by Yizhou Yu.
Search for more articles by Qifeng Tan.
Search for more articles by Qunsheng Peng.
Search for more articles by Baining Guo.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."