Modeling and animation of fracture of heterogeneous materials based on CUDA
Jiangfan Ning, Huaxun Xu, Bo Wu, Liang Zeng, Sikun Li, Yueshan Xiong
In The Visual Computer, 29(4), April 2013.
Abstract: Existing techniques for animation of object fracture are based on an assumption that the object materials are homogeneous while most real world materials are heterogeneous. In this paper, we propose to use movable cellular automata (MCA) to simulate fracture phenomena on heterogeneous objects. The method is based on the discrete representation and inherits the advantages from both classical cellular automaton and discrete element methods. In our approach, the object is represented as discrete spherical particles, named movable cellular automata. MCA is used to simulate the material and physical properties so as to determine when and where the fracture occurs. To achieve real-time performance, we accelerate the complex computation of automata's physical properties in MCA simulation using CUDA on a GPU. The simulation results are directly sent to vertex buffer object (VBO) for rendering to avoid the costly communication between CPU and GPU. The experimental results show the effectiveness of our method.
@article{Ning:2013:MAA,
author = {Jiangfan Ning and Huaxun Xu and Bo Wu and Liang Zeng and Sikun Li and Yueshan Xiong},
title = {Modeling and animation of fracture of heterogeneous materials based on CUDA},
journal = {The Visual Computer},
volume = {29},
number = {4},
pages = {265--275},
month = apr,
year = {2013},
}
Return to the search page.
graphbib: Powered by "bibsql" and "SQLite3."