3D flow features visualization via fuzzy clustering
Huaxun Xu, Zhi-Quan Cheng, Ralph R. Martin, Sikun Li
In The Visual Computer, 27(6-8), June 2011.
Abstract: A key approach to visualizing a flow field is to emphasize regions with significant behavior. However, it is difficult to give concrete criteria for classifying feature regions. In this paper, we use a novel framework in which fuzzy sets are used to determine flow features: Fuzzy relationships assess structural properties of features. A fuzzy c-means-like clustering algorithm is used to evaluate the importance of each voxel. Our approach can be readily modified with new fuzzy relationships describing other features of interest to users. We use a multi-resolution approach which displays structural features in greater detail, and represents the background by coarse-grained information. Experiments on synthetic and real datasets show that our framework can highlight significant aspects of the whole flow while avoiding occlusion and clutter. Interactive performance is achieved via a GPU implementation.
Article URL: http://dx.doi.org/10.1007/s00371-011-0577-8
BibTeX format:
@article{Xu:2011:3FF,
  author = {Huaxun Xu and Zhi-Quan Cheng and Ralph R. Martin and Sikun Li},
  title = {3D flow features visualization via fuzzy clustering},
  journal = {The Visual Computer},
  volume = {27},
  number = {6-8},
  pages = {441--449},
  month = jun,
  year = {2011},
}
Search for more articles by Huaxun Xu.
Search for more articles by Zhi-Quan Cheng.
Search for more articles by Ralph R. Martin.
Search for more articles by Sikun Li.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."