Evaluation of a geometry-based knee joint compared to a planar knee joint
Anders Sandholm, Cédric Schwartz, Nicolas Pronost, Mark de Zee, Michael Voigt, Daniel Thalmann
In The Visual Computer, 27(2), February 2011.
Abstract: Today neuromuscular simulations are used in several fields, such as diagnostics and planing of surgery, to get a deeper understanding of the musculoskeletal system. During the last year, new models and datasets have been presented which can provide us with more in-depth simulations and results. The same kind of development has occurred in the field of studying the human knee joint using complex three dimensional finite element models and simulations. In the field of musculoskeletal simulations, no such knee joints can be used. Instead the most common knee joint description is an idealized knee joint with limited accuracy or a planar knee joint which only describes the knee motion in a plane. In this paper, a new knee joint based on both equations and geometry is introduced and compared to a common clinical planar knee joint. The two kinematical models are analyzed using a gait motion, and are evaluated using the muscle activation and joint reaction forces which are compared to in-vivo measured forces. We show that we are able to predict the lateral, anterior and longitudinal moments, and that we are able to predict better knee and hip joint reaction forces.
Article URL: http://dx.doi.org/10.1007/s00371-010-0538-7
BibTeX format:
@article{Sandholm:2011:EOA,
  author = {Anders Sandholm and Cédric Schwartz and Nicolas Pronost and Mark de Zee and Michael Voigt and Daniel Thalmann},
  title = {Evaluation of a geometry-based knee joint compared to a planar knee joint},
  journal = {The Visual Computer},
  volume = {27},
  number = {2},
  pages = {161--171},
  month = feb,
  year = {2011},
}
Search for more articles by Anders Sandholm.
Search for more articles by Cédric Schwartz.
Search for more articles by Nicolas Pronost.
Search for more articles by Mark de Zee.
Search for more articles by Michael Voigt.
Search for more articles by Daniel Thalmann.

Return to the search page.


graphbib: Powered by "bibsql" and "SQLite3."